
Sci.Int.(Lahore), 29(6),1187-1196,2017 ISSN 1013-5316; CODEN:SINTE 8 1187

SOLVING MULTI OBJECTIVE ASSIGNMENT PROBLEM USING TABU
SEARCH ALGORITHM

A. M. Kadhem
Department of Statistics, College of Economic & Administration,University of Baghdad, Baghdad, Iraq

Contact: Munaam53@yahoo.com

ABSTRACT: This paper presents the multi-objective tabu search method for the multi-objective assignment problem. As a

well-known adaptation of the tabu search, it uses heuristically to create non-dominated alternatives to multi-objective

combinatorial optimization problems. MOTS works with a set of current solutions that appreciate the manipulation of

weights, which is optimized towards the non-dominated border while trying to disperse on the border. It generate some

problem to measure the effectiveness of the algorithm in three different objective sizes of the question and compare the

results with the simulated annealing algorithm, the genetic algorithm and particle swarm optimization by three

measurements. This algorithm has displayed great efficiency in solving the problem in relation to the rest of the roads.

Keywords Combinatorial optimization, Multi-objective optimization, Tabu search, Assignment problem, Particle Swarm optimization.

1. INTRODUCTION

The classical assignment problem (AP) is to search for one

to one identity amongst n jobs and n workers, the main idea

is the reduction of the total cost or maximizing the total

efficiency of the assignments. The classical AP has widely

been studied in literatures and several algorithms are

accessible for solving it, for example, the Hungarian

method [5], the flow type method [3], the Munkres method

[9].

In real world most of the assignment problem possess

multiple objective such as reduction in cost and

simultaneously increasing difficult problems, number of

objectives and switching from the problem of multi-

algorithm solution of the border into a more complex

geometry problem as seen in most issues that multiple

objective does not have a polynomial algorithm and also in

the field of multi-objective combinatorial optimization

problem.

2. The Multi objective Optimization Problem

The problem of multi-objective optimization can be

explained as a problem of discovering a vector of decision

variables that meet the constraints and optimizing a vector

function whose objective functions is represented by

elements. These functions are mathematical explanation for

performance conditions which are always in conflict with

each other. So, the term "optimize" means discovering such

solution that would provide the values of all objective

functions which would be accepted by the decision maker.

Multi-objective optimization’s general problem can now be

correctly defined as follows:

Definition 1 (General MOP): Find the vector ⃗
 ,

 - which satisfies the m inequality

constraints:

 (⃗) ()
the p equality constraints

 (⃗) ()
and optimizes the vector function

 ⃗(⃗) , (⃗) (⃗) (⃗)-

In other words, it aims to determine from the set of all the

numbers that satisfy (1) and (2) for particular set

 which provides the values for optimal all-

purpose functions. The constraints given by (1) and (2)

define the feasible region n and any

A workable solution is define by the point ⃗ in Ω. The

vector function ⃗(⃗) is a function that maps the set Ω into

the set Λ which represents all the possible values of the

objective functions. The k components of the vector

 ⃗(⃗)represent the non-commensurable conditions that must

be put into consideration. The constraints (⃗) and (⃗)
represent the restraints enforced on the decision variables.

The vector i* is reserved to denote the optimal solutions

(there are commonly more than one).

3. Multi objective Assignment problem
The expression of general multi-objective combinatorial

optimization problem is as follows:

() {
min () (() () ())

Where represents the number of objective

functions, () represents the vector for the

decision variables, S represents the (finite) set of practical

solutions in the solution space . The set Z = F(S) is the

feasible points (outcome set) in the objective space

and (), with (), is a point of

the objective space.

Importantly in (MOCO), the term ―min‖ is presented in a

quotation marks because, there is no single solution that

exist that is minimal on all objectives. As a result,

numerous concepts must be proven to explain what an

optimal solution is. The most frequently used one is the

dominance relation (also known as Pareto dominance) (Fig.

1):

Definition 2 A point () dominates a point

 () and we denotes if and only

for all i * +, with at least one
 * + such that().

1188 ISSN 1013-5316; CODEN:SINTE 8 Sci.Int.(Lahore), 29(6),1187-1196,2017

 () ∑ ∑
 ()

 (3)

Fig. 2. Algorithm: Iterative Improvement.

 * +
The difficulty of MOCO problems was generated from the

following two factors.

• The resolution of a MOCO problem needs thorough

cooperation with the decision makers (DM), which

transforms into a specific high requirements for the

effective tools utilized in generating effective solutions.

• Several combinatorial problems are challenging, even in

single-objective versions while their multiple objective

versions are more difficult.

Furthermore, several single-purpose combinatorial

difficulties belong to the group of NP-hard problems.

Creating effective solutions in a MOCO problem is

apparently not easier than searching solutions that optimize

specific objectives and in most cases is more difficult. For

instance,

The tools utilize for generating effective solutions in

MOCO, like single-purpose optimization methods, can be

grouped into one of the following:

• exact procedures;

• specialized heuristic procedures;

• meta-theorist procedures.

4. Local Search algorithms
In this segment, we give an account of the metaheurists

called trajectory methods. The trajectory methods term is

used due to the searching process carried out by these

methods which is characterized by a trajectory in the search

space. Subsequently, a successive solution might or might

not be in the locality of the present solution. The process of

looking for trajectory methods can be considered as the

(discrete) evolution of a discrete dynamic system (Bar-Yam

1997]. The algorithm starts from a preliminary state (the

initial solution) describing the trajectory in the state space.

The system dynamics depend on the strategy used; Simple

algorithms create a trajectory which is made of two parts: a

transitory phase followed by an attractor (a fixed point, a

cycle or a complex attractor). Algorithms with advanced

strategies produce more complex

Definition 3 A solution x S is regarded as (Pareto)

efficient for (MOCO) if and only it does not exist in any

other feasible solution , in such that () (
)

for with at least one * + such that

 () (
). The point () is then called a non-

dominated point. The set of efficient solutions, also known

as the Pareto optimal set, is always denoted by E and the

image of E in Z is called the non-dominated frontier or the

Pareto optimal front which is denoted by .

The single objective assignment problem (AP) is an integer

programming problem which can be solved using a linear

program because of the constraint matrix in total

unimodularity. The Hungarian method or the successive

shortest paths method (Papadimitriou and Steiglitz, 1982;

Ahuja et al., 1993) are the well-known efficient algorithm

for solving it. In this paper, we are considering the

assignment problem with two objectives (BAP). This can

be formulated as described below:

This solution can be detected via numerous methods, where

the solution is given by a permutation vector , of n

elements:

Fig. 1 Dominations in the Pareto sense in a bi-objective Space

trajectories that cannot be divided into these two phases.

The features of the trajectory give information on the

behavior of the algorithm and how effective it is with

regards to the case addressed. Therefore, it should be

underscored that the dynamics is the result of the

summation of the algorithm, the problems representation

and the instance of the problem. In fact, the problem

representation and the neighborhood structure define the

research landscape. The algorithm provides the description

of the strategy employed for exploring the landscape and

finally the actual features of the search space are defined by

the instance of the problem to be solved. Firstly, we will

describe the basic local search algorithms prior to moving

on to more complex strategies and lastly we deal with

general exploration strategy algorithms which can integrate

other trajectory methods as components.

4.1 Basic Local Search: Iterative Improvement

Basic local search is generally referred to as iterative

enhancement, since every movement is only carried out if

the resulting solution is better than the current solution. The

algorithm stops immediately, it finds a local minimum. The

high level algorithm is defined in Figure 2. The Enhance (N

(s)) function can either be at the extreme or at a first

improvement, or at any intermediate option. The first

analyzes the N (s) of the neighborhood and select the first

A better solution than s is that the latter exhaustively

explores the neighborhood and returns one of the solutions

with the lowest objective function value. Both methods

terminate at local minimums. Therefore, their performance

strongly rely on the definition of . The

performance of Iterative improvement procedures on COP

is mostly unsatisfactory. Therefore, numerous techniques

have been developed to stop algorithms from being trapped

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐋𝐒
𝑠 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛()
 𝒓𝒆𝒑𝒆𝒂𝒕

𝒖𝒏𝒕𝒊𝒍 𝑛𝑜 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

 𝑠 ← 𝐼𝑚𝑝𝑟𝑜𝑣𝑒(𝑁(𝑠))

Sci.Int.(Lahore), 29(6),1187-1196,2017 ISSN 1013-5316; CODEN:SINTE 8 1189

in local minima, which is performed by the addition of

mechanisms that permit them to escape local minima. This

also infers that the terminating conditions of the

metaheurstic algorithms are more complex than simply

reaching a local minimum. Certainly, the possible

termination conditions include: the maximum CPU time, a

maximum number of iterations, a solution s with () less

than a predefined threshold value or the maximum number

of iterations without improvements is reached.

4.2 Simulated Annealing

Simulated annealing (SA) is usually regarded as the oldest

among the metaheurstic and definitely one of the premier

algorithms that possess an explicit strategy for escaping the

local minima. The statistical mechanics are the origins of

the algorithm (Metropolis algorithm) and it was presented

for COP in Kirkpatrick et al. [25] and Cerny [26] as a

search algorithm. The ultimate idea is to permit movements

leading to quality solutions worse than the current solution

(uphill movements) in order to escape the local minima.

The probability of such a movement is reduced during the

search. The high level algorithm is described in Figure 3.

Fig. 3. Algorithm: Simulated Annealing (SA).

The algorithm starts by creating an initial solution

(constructed in a random or heuristic manner) and the

initialization of the temperature parameter T. Then, at each

iteration, a solution () is randomly sampled and is

accepted as F (s), f (s), and T. s0 replaces s if ()
 () or, in the case () ¸ f Which is a function of T and

 () (). The probability is commonly computed

following the Boltzmann distribution (
 () ()

)
.

There is a decrease in temperature T during the search

process at the beginning of the search, the probability of

accepting uphill movements is higher and it steadily
decreases, congregating towards a simple iterative

improvement algorithm. This process is similar to the metal

and glass process of annealing, which gives a low

configuration of energy when cooled with a suitable

cooling program. With regards to the search process, it

means that the algorithm is the result of the combination of

two strategies: random walk and iterative improvement. In

the first phase of this research, the bias of the

improvements is minimal and permits the exploration of the

research space; this erratic component reduces gradually,

which results to search for converge to a minimum (local).

The probability of accepting uphill movements is regulated

by two factors: the difference among objective functions

and temperature. On the one hand, at a fixed temperature,

the higher the difference () () the lower the

probability of accepting a displacement from S to S'. On the

other hand, the higher the T, the higher the probability of

uphill climb. Choosing an appropriate cooling schedule is

crucial to the performance of the algorithm. The cooling

program defines the value of T at each iteration k,

 () (), where () is a

function of temperature and number of iterations and

 () To an exponential decay of the temperature ...

Theoretical results on non-homogeneous Markov chains

[Aarts et al. 1997] indicated that, under specific conditions

on the cooling schedule, the algorithm converges in

probability to a global one.

The intensity of water can be reduced with water cooling.

For example, at the beginning of the search, T could be

constant or reduce linearly for the sampling of the search

space; Then T could go along the geometry rule, to

converge to the minimum at the end of the search.

Most successful variants are non-monotonic cooling

schedules as described by Osman[19] and Lundy and Mees

1986 [20],. Non-monotonic cooling schedules are

categorized by alternating the cooling and reheating phases,

which offer an oscillating balance between diversification

and intensification.

The cooling system and the initial temperature should adapt

to the particular problem because the structure of the

research landscape determines the cost of exhausting local

minima. The easiest way to empirically determine the

starting temperature is to first sample the search space

with a random walk to approximate the average and the

variance of the values of the objective function and also

implementation of more elaborate schemes can be

performed [21].

4.3 Tabu search

Tabu Search (TS) is one of the most common cited

metaheuristics used for CO problems. Glover was first to

introduce the basic ideas of TS based on former ideas

[22][23].

The method and its concepts can be found in Glover and

Laguna [24]. TS clearly uses the search history, for

escaping local minima and for the implementation of an

exploration strategy.

A simple version of TS would be first described to present

the basic concepts. Further, we will explain a more

applicable algorithm and lastly we will discuss some

improvements.

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐒𝐀
𝑠 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛()
𝑇 ← 𝑇
𝒘𝒉𝒊𝒍𝒆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡 𝒅𝒐
𝑠 ← 𝑃𝑖𝑐𝑘𝐴𝑡𝑅𝑎𝑛𝑑𝑜𝑚(𝑁(𝑠))
𝒊𝒇 (𝑓 (𝑠) 𝑓 (𝑠)) 𝒕𝒉𝒆𝒏
𝑠 ← 𝑠 % 𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠 𝑠
𝒆𝒍𝒔𝒆
𝐴𝑐𝑐𝑒𝑝𝑡 𝑠 𝑎𝑠 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝(𝑇 𝑠 𝑠)
𝒆𝒏𝒅𝒊𝒇
𝑈𝑝𝑑𝑎𝑡𝑒(𝑇)
𝒆𝒏𝒅𝒘𝒉𝒊𝒍𝒆

1190 ISSN 1013-5316; CODEN:SINTE 8 Sci.Int.(Lahore), 29(6),1187-1196,2017

Fig. 4. Algorithm: Simple Tabu Search (TS).

The simple TS algorithm put on a better local search for

improvement as the elementary ingredient and utilizes a

short-term memory for escaping local minima and for

cycle’s avoidance. The short-term memory is implemented

in the form of list of tables which permits the tracking of

the last solutions visited and stop the displacements

towards them. The area of the current solution is so limited

to solutions that do not belong to the list of tabuses. This

set will be refer to as defined in the following,

At each iteration, the best solution of the authorized game

is chosen as the new current solution. Likewise, this

solution is added to the list of tabu and one of the solutions

already contained in the tabu list is deleted (usually in a

FIFO command). Due to this dynamic restriction of

permitted solutions in a neighborhood, TS can be

considered as a dynamic neighborhood research technique

[34]. The algorithm stops when a termination condition is

met. It can also terminate if the allowed set is empty, if all

solutions of N (s) are forbidden by the list of tabu.

Application of a tabu list inhibits the going back to recently

visited solutions, Therefore, it prevents endless cycling and

forces research to accept uphill movements. The length l of

the tabu list (the duration of the tabu) controls the memory

of the search process. With small tabu positions, the search

will focus on small areas of the search space. On the other

hand, a huge regime of taboos forces the research process

to discover larger regions because it prevents revisiting a

greater number of solutions. The duration of the tabu can

differs during the search, leading to more robust

algorithms. [27] described the model for this, in which the

tabu regime is occasionally reset indiscriminately from the

interval [lmin, lmax]. A more advanced use of a dynamic

taboo regime is described in [28,29],

The rate of pension increased if evidence for repetition of

solutions exist (Hence greater diversification is required),

Eight strategies to elude stopping the search when the

allowed play is empty include choosing the less solution

recently visited, even if it is a tabu. Nine cycles of higher

period are possible, since the list of tabu has a finite length

l which is lesser than the Cardinality of the search space.

While it drops if no improvements is observed (therefore

the strength should be intensify). More advanced ways for

creating a dynamic taboo regime are defined in Glover

[30]. Nevertheless, the implementation of short-term

memory as a list having total solutions is not practical since

managing a list of solutions is very ineffective. So, instead

of the solutions themselves, the solution characteristics are

stored. Attributes are typically solution components,

movements, or differences among two solutions. As more

than a single feature can be considered, a tabu list is entered

for each characteristic. The set of features and the

corresponding tabu lists describe the tabu conditions that

are used for filtering the neighborhood of a solution and for

creating the permitted set. Storing attributes instead of

complete solutions has greater efficient, but it results to loss

of information because forbidding an attribute implies

affecting the state of the table to probably more than one

solution. Consequently, it is promising that non-visited

solutions of good quality are left out from the permitted

play. To circumvent this problem,

Suction criteria are defined to allow a solution to be

included in the permitted game, even though it is prohibited

by the tabu conditions. The Suction Criteria set the suction

settings for generating the allowed set. The most widely

utilized aspiration criterion selects better when compare to

the best solutions. The complete algorithm, as defined

above, is reported in Figure 4. Taboo lists are only one way

to take advantage of the search history. They are usually

recognized using the short-term memory. The information

collected during the search procedure can also be very

valuable, particularly for a strategic orientation of the

algorithm. This particular long-term memory is commonly

added to TS by referring to four principles i.e. recurrence,

frequency, quality and influence. The memory records

based on recurrence for each solution (or feature) which is

the most recent iteration that was involved. The memory

based on the orthogonal frequency keeps record of how

frequent each solution (attribute) was visited. This

information identifies the regions (or Subsets) of the

solution space where the search was restricted or where

there is a remained of a large number of iterations. This

kind of information regarding the past is generally

exploited for research diversification. The third principle

(that is, quality) refers to the accumulation and retrieval of

information from the search history for identifying good

solution components. This information can be incorporated

efficiently into the construction of the solution. Other

metaheuristics (for example, Ant Colony Optimization)

explicitly utilize this principle to distinguish the right

combinations of components in the solution. Lastly,

influence is a property concerning the choices made during

the search and can be used for indicating which choices are

the most vital. Overall, the TS field is a rich source of

ideas. Several of these ideas and strategies have been and

are being adopted by other metaheuristics. TS has been

applied to most CO problems; Examples for successful

applications are Robust Tabu Search in QAP [27], Tabu

reactivity to the MAXSAT problem [29], and assignment

problems]. TS approaches dominate the challenging area of

Job Shop Scheduling (JSS) and the vehicle routing area

(VR).

Multi objective Tabu search algorithms
The multi-objective tabu search procedure, MOTS,

functions using a set of current solutions that are

concurrently optimized against the non-dominated border.

The points of the existing solutions are sought to cover the

entire boundary and, for each solution in numerous times.

An optimization direction is produce so that it tends to

migrate away from the other points in the direction of the

boundary not dominated. The solutions in turn take the

application of a motion according to a tabu search heuristic

and each solution maintains its own tabu list. In the

following, we will annotate the Pascal contour of the

MOTS database in FIG. 5.

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐓𝐒
𝑠 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛()
𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ← 𝜙
𝑤 𝑖𝑙𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡 𝑑𝑜
𝑠 ← 𝐶 𝑜𝑜𝑠𝑒𝐵𝑒𝑠𝑡𝑂𝑓(𝑁(𝑠)\ 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡)
𝑈𝑝𝑑𝑎𝑡𝑒(𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡)
𝑒𝑛𝑑𝑤 𝑖𝑙𝑒

Sci.Int.(Lahore), 29(6),1187-1196,2017 ISSN 1013-5316; CODEN:SINTE 8 1191

In row 1, each current solution is set to a random startup

solution and the list of tabs (TL) is flushed. In line 2, the

current set of non-dominated points (ND) is emptied, an

iteration counter is reset and the range equalization factors

(p) are defined on a unit vector. We then commence the

loop which continually vacate each current solution passing

a neighboring solution until a certain STOP criterion is

respected. In lines 5-11, the weight vector (l) for the point

is determined. This vector belongs to L and thus guarantees

the optimization towards the non-dominated limit. We want

to repair the weights so that the point moves away from the

other points, ideally, that the points are distributed

equidistantly on the border. Thus, each element of the

weight vector is defined as a function of the proximity of

other points for this purpose. Though, we only compare one

point with the points of the current solution to which it is

not dominated. The closer a point is, the more it should

influence the weight vector. Proximity is measured by a

distance function (d) as a function of certain measurements

in the objective function space using the weights of the

range. The influence is produce by a decreasing and

positive proximity function (g) over the distance. In

practice, the well-functioning proximity function ()
 , as well as the Manhattan distance (used on the scale

objectives by the beach equalization factors, i.e.

 () ∑ |

 | Emphasis on result in rows 12

to 15, the standard tabu search procedure is used to replace

a current solution with the possible neighborhood solution

(generated by the neighborhood function N) that can be

reached from Tabu. This is a type of attribute (A) on

solutions of solutions and solutions to avoid movements to

the solution. The best neighbor is determined by the scalar

product between the weight vector and the vector objective

function.

In line 16, the new point is inserted into the ND-set if it is

not dominated by it, and the points previously defined in

the ND-set that are dominated if any is deleted and we can

also save the solution if interested. The equation of the

range is defined as a function of the ranges of points in the

set ND that can be updated (of course they can only be

calculated if we have at least two points defining a positive

range in each goal). The use of point ranges in the ND set is

a common suggestion in cases where no other knowledge

of ranges is available. In this paper, we propose a random

solution. It's a non-dominated border, and a non-dominated

point. The next section will show how the dynamic

dynamics of the drives in the X.

Finally, in line 18, the iteration counter is increase by 1,

and we are ready to continue with the next of the current

solutions.

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐌𝐎𝐓𝐒
 for each solution x𝑖 in X do set x𝑖 to a random feasible solution and set TLi *+
 set ND ϕ and set count and set π𝑘 n for all objectives k
3 repeat
4 for each solution x𝑖 in X do
5 set λ
6 for each solution j in X where f(xj)is n dominated by f(xi) and f(xi) ≠ f(xj) do
7 set w g(d(f(xi) f(xj) π))
8 for all objective k where fk(xi) fk(xj) do set λ𝑘 λ𝑘 π𝑘w
9 end
 if λ then set λ to a randomly chosen vector from Λ
 normalize(λ)
 find the solution yi which minimizes λ f(xi) where yi N(xi) and A(xi yi) ∉ TLi
 3 if TLi is full then remove oldest element from TLi
 4 add A(yi xi) to TLi as the newest element
 5 set xi yi
 6 if f(yi) is n dominated by all point in ND then implement the point f(yi) into ND
and update π
 7 if DRIFT criterion is reached then set one randomly selected solution from
X equal to another randomly selected solution from X
 8 set count count
 9 end
 until STOP criterion is met

Figure 5: The basic MOTS procedure

1192 ISSN 1013-5316; CODEN:SINTE 8 Sci.Int.(Lahore), 29(6),1187-1196,2017

Figure 6: Structure of an iteration for a multi objective Tabu Search

5. Neighborhood search

In the local search, three procedure were used. The novel

solution is a neighbor of the existing solution. The first is a

swap procedure which is sufficient for selecting randomly

from the existing solution of (in the solution space) two

workers and for swapping between the jobs for which they

were assigned (see Figure 7-a).

In the second process, we randomly select two points

provided that the second point is greater than the first and

with inversion vector between the two points (see Figure 7-

b). The third process we randomly select two points

provided their second point is greater than the first and then

the following equation is applied (see Figure 7-c):

 , () () ()-
 (4)

6. Experimental Results

The algorithm was tested with new data on problems that

were randomly chosen with a range of coefficients of the

objective functions in [0, 20]. Each problem is re-run ten

times using a Core-i5 2.4 GHz PC with 4GB RAM in

Windows operating system and programming using matlab

2013 a. It was then compared to (TS,SA,GA.PSO) and we

evaluated their performances according to three measures

of quality of E (approximate set of efficient solutions):

1. An average distance between ̂ and E :

 (̂)
∑ (̂)

| |
 (5)

2. A worst case distance between ̂ and E :

 (̂) max

 (̂) (6)

3. A measure of the uniformity of quality of ̂ :

 (̂)

 (̂)
 (7)

Solution : 3 1 2 4 7 6 5

New Solution : 3 7 2 4 1 6 5

Figure (7-a):local search procedure (swap)

𝐽 𝐽

Solution : 3 1 2 4 7 6 5

New Solution : 3 7 4 2 1 6 5
Figure (7-b):local search procedure

(inersion)

𝐽 𝐽

Solution : 3 1 2 4 7 6 5
New Solution : 7 6 5 2 4 3 1

Figure (7-c):local search procedure (2-opt)

𝐽 𝐽

Sci.Int.(Lahore), 29(6),1187-1196,2017 ISSN 1013-5316; CODEN:SINTE 8 1193

Table(1) The results of the comparison between algorithms for size problem between(15-60)

Table(2) The results of the comparison between algorithms for size problem between(75-120)

problem TS PSO SA GA

number size D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s)

11 75 15.33 192.00 12.52 101.90 124.33 296.00 2.38 75.88 196.67 384.00 1.95 14.18 175.33 357.00 2.04 64.04

12 80 13.67 187.00 13.68 116.61 122.67 306.00 2.49 75.43 201.67 419.00 2.08 15.09 181.33 355.00 1.96 68.75

13 85 13.33 185.00 13.88 129.12 161.33 338.00 2.10 78.64 226.67 420.00 1.85 14.98 198.33 383.00 1.93 68.78

14 90 17.00 202.00 11.88 139.39 146.33 342.00 2.34 79.36 230.67 421.00 1.83 16.65 215.33 394.00 1.83 67.45

15 95 16.00 207.00 12.94 153.36 204.67 394.00 1.93 80.81 261.33 471.00 1.80 16.47 239.00 466.00 1.95 69.75

16 100 17.00 221.00 13.00 171.07 196.00 412.00 2.10 85.07 280.67 490.00 1.75 16.91 257.67 506.00 1.96 78.13

17 105 21.00 215.00 10.24 178.29 267.00 471.00 1.76 86.30 304.00 516.00 1.70 16.43 283.67 519.00 1.83 77.16

18 110 14.67 231.00 15.75 192.68 194.33 414.00 2.13 82.27 313.00 535.00 1.71 15.24 294.33 519.00 1.76 76.72

19 115
17.33 257.00 14.83 207.68 320.67 564.00 1.76 83.59 326.33 563.00 1.73 15.40 306.33 548.00 1.79 78.34

20 120 19.00 249.00 13.11 211.93 245.00 481.00 1.96 84.05 355.33 593.00 1.67 15.43 316.00 542.00 1.72 81.71

problem TS PSO SA GA

number size D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s)

1 15 3.67 55.00 15.00 9.44 1.67 57.00 34.20 50.00 6.00 64.00 10.67 11.33 2.00 59.00 29.50 30.97

2 20 7.67 61.00 7.96 18.77 4.67 67.00 14.36 59.28 23.00 82.00 3.57 14.71 10.00 71.00 7.10 39.92

3 25 2.33 86.00 36.86 20.90 10.00 92.00 9.20 62.17 21.33 102.00 4.78 13.95 14.67 93.00 6.34 42.93

4 30 6.67 78.00 11.70 27.85 15.00 98.00 6.53 63.40 44.00 132.00 3.00 14.29 34.00 117.00 3.44 47.42

5 35 7.00 101.00 14.43 32.12 26.33 113.00 4.29 63.87 63.00 157.00 2.49 13.10 49.00 149.00 3.04 48.53

6 40 7.33 121.00 16.50 36.97 40.67 162.00 3.98 67.47 65.67 222.00 3.38 14.52 58.00 180.00 3.10 51.39

7 45 8.33 121.00 14.52 45.60 45.67 184.00 4.03 68.27 83.67 206.00 2.46 15.02 73.67 208.00 2.82 56.89

8 50 8.33 119.00 14.28 52.60 74.33 221.00 2.97 71.59 109.33 223.00 2.04 15.58 79.33 213.00 2.68 56.43

9 55 11.67 139.00 11.91 58.95 71.33 204.00 2.86 74.57 120.67 266.00 2.20 15.07 97.67 241.00 2.47 59.98

10 60 12.33 154.00 12.49 69.06 74.33 211.00 2.84 73.74 140.00 286.00 2.04 13.28 116.33 258.00 2.22 60.37

1194 ISSN 1013-5316; CODEN:SINTE 8 Sci.Int.(Lahore), 29(6),1187-1196,2017

Table(3) The results of the comparison between algorithms for size problem between(150-250)

problem TS PSO SA GA

number size D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s)

21 150 42.00 310.00 7.38 44.16 326.33 621.00 1.90 63.10 460.67 765.00 1.66 9.87 427.33 733.00 1.72 183.47

22 160 55.00 358.00 6.51 22.34 335.67 617.00 1.84 52.43 497.00 807.00 1.62 22.32 469.67 778.00 1.66 95.88

23 170 50.67 360.00 7.11 21.47 521.67 826.00 1.58 63.87 540.00 906.00 1.68 10.41 502.33 817.00 1.63 95.93

24 180 42.33 338.00 7.98 40.01 585.33 901.00 1.54 60.04 587.33 948.00 1.61 10.50 563.00 859.00 1.53 88.30

25 190 57.33 377.00 6.58 38.59 617.67 948.00 1.53 57.44 622.00 963.00 1.55 11.31 569.67 891.00 1.56 65.66

26 200 46.33 397.00 8.57 30.09 547.67 906.00 1.65 63.45 648.33 980.00 1.51 11.86 623.00 980.00 1.57 77.36

27 210 56.00 423.00 7.55 50.59 683.33 1056.00 1.55 68.38 707.67 1070.00 1.51 12.31 663.33 1040.00 1.57 139.46

28 220 53.00 410.00 7.74 63.20 670.00 1067.00 1.59 79.69 748.67 1121.00 1.50 21.65 705.33 1071.00 1.52 114.77

29 230 51.33 449.00 8.75 68.03 768.67 1149.00 1.49 65.47 768.00 1159.00 1.51 11.09 745.33 1164.00 1.56 186.98

30 240 48.67 440.00 9.04 91.37 824.00 1234.00 1.50 60.75 822.00 1244.00 1.51 23.24 788.33 1208.00 1.53 77.88

31 250 65.33 471.00 7.21 66.47 864.67 1258.00 1.45 121.73 874.00 1336.00 1.53 13.88 813.33 1279.00 1.57 163.35

Sci.Int.(Lahore), 29(6),1187-1196,2017 ISSN 1013-5316; CODEN:SINTE 8 1195

Figure (8-a): the comparison between algorithms (problem1-

problem10)

Figure (8-b): the comparison between algorithms (problem11-

problem20)

Figure (8-c): the comparison between algorithms (problem21-

problem31)

DISCUSSION RESULT

In Tables 1, 2 and 3, we make available a summary of the

results acquired by the TS Algorithm and PSO, SA and GA

Algorithms. Comparing the TS with three Algorithms, it

was observed that in terms of the quality of the solutions

the TS goes beyond the determination of PSO more than 1

and 2 effective solutions at the same time. For other cases

the TS provided all the advantages Solutions.

7. CONCLUSION

 In this article, a Tabu search algorithm using three local

moves (2-opt, inversion and swap) has been proposed to

solve a multi-objective assignment problem with three or

more objectives. The first results are promising. When

compared to Pso, SA and GA, the Tabu search algorithm

permit much better solutions for same time. In the future

work, many computational experiments could be studied

for a multi-objective assignment problem and other classes

of multi-objective combinatorial optimization problems.

Finally, we propose to parallelize the method: instead of

choosing a new current solution from the set of efficient

local solutions in the neighborhood of , we reiterate the

method with all local solutions efficient to get a better

Quality solutions.

REFERENCE

1. Day, Richard O., and Gary B. Lamont.

"Multiobjective quadratic assignment problem solved

by an explicit building block search algorithm–

MOMGA-IIa." European Conference on Evolutionary

Computation in Combinatorial Optimization. Springer

Berlin Heidelberg, 2005.‏

2. Serafini, Paolo. "Some considerations about

computational complexity for multi objective

combinatorial problems." Recent advances and

historical development of vector optimization.

Springer Berlin Heidelberg, 1987. 222-232.‏

3. L. R. Ford Jr. and D. R. Fulkerson, Flows in

Networks. Princeton

University Press, New Jersey, 1962.

4. Ge, Yue, Minghao Chen, and Hiroaki Ishii. "Bi-

criteria bottleneck assignment problem." Fuzzy

Information Processing Society (NAFIPS), 2012

Annual Meeting of the North American. IEEE, 2012.‏

5. H. W. Kuhn, The Hungarian method for th assignment

problem. Naval Logistics Quarterly 2, 83-97, 1955.

6. Blum, Christian, and Andrea Roli. "Hybrid

metaheuristics: an introduction." Hybrid

Metaheuristics. Springer Berlin Heidelberg, 2008. 1-

 ‏.30

7. Adiche, Chahrazad, and Méziane Aïder. "A Hybrid

Method for Solving the Multi-objective Assignment

Problem." Journal of Mathematical Modelling and

Algorithms 9.2 (2010): 149-164.‏

8. Przybylski, Anthony, Xavier Gandibleux, and

Matthias Ehrgott. "Two phase algorithms for the bi-

objective assignment problem." European Journal of

Operational Research 185.2 (2008): 509-533.‏

9. J. Munkres, Algorithms for the assignment and

transportation problems. Journal of Society for

Industrial and Applied Mathematics 5(1), 32-38,

1957.

1196 ISSN 1013-5316; CODEN:SINTE 8 Sci.Int.(Lahore), 29(6),1187-1196,2017

10. Ulungu, Ekunda Lukata, and Jacques Teghem.

"Multi‐ objective combinatorial optimization

problems: A survey." Journal of Multi‐ Criteria

Decision Analysis 3.2 (1994): 83-104.‏

11. Blum, Christian, and Andrea Roli. "Metaheuristics in

combinatorial optimization: Overview and conceptual

comparison." ACM Computing Surveys (CSUR) 35.3

 ‏.268-308 :(2003)

12. Coello, Carlos A. Coello, Gary B. Lamont, and David

A. Van Veldhuizen. Evolutionary algorithms for

solving multi-objective problems. Vol. 5. New York:

Springer, 2007.‏

13. Balicki, Jerzy. "Tabu programming for multiobjective

optimization problems." International Journal of

Computer Science and Network Security 7.10 (2007):

 ‏.44-51

14. Hansen, Michael Pilegaard. "Tabu search for

multiobjective optimization: MOTS." Proceedings of

the 13th International Conference on Multiple Criteria

Decision Making. 1997.‏

15. Jaffres-Runser, Katia, Jean-Marie Gorce, and Cristina

Comaniciu. "A multiobjective Tabu framework for

the optimization and evaluation of wireless

systems." arXiv preprint arXiv:0907.3777 (2009).‏

16. Deb, Kalyanmoy, Karthik Sindhya, and Jussi

Hakanen. "Multi-objective optimization." Decision

Sciences: Theory and Practice. CRC Press, 2016. 145-

 ‏.184

17. Salehi, Kayvan. "An approach for solving multi-

objective assignment problem with interval

parameters." Management Science Letters 4.9 (2014):

 ‏.2155-2160

18. Aarts, Emile HL, and Jan Karel Lenstra, eds. Local

search in combinatorial optimization. Princeton

University Press, 1997.‏

19. Osman, Ibrahim Hassan. "Metastrategy simulated

annealing and tabu search algorithms for the vehicle

routing problem." Annals of operations research 41.4

(1993):421-451

20. Lundy, Miranda, and Alistair Mees. "Convergence of

an annealing algorithm." Mathematical

programming 34.1 (1986): 111-124.

21. Ingber, Lester. "Statistical mechanics of nonlinear

nonequilibrium financial markets: Applications to

optimized trading." Mathematical and computer

modelling 23.7 (1996): 101-121.

22. Glover, Fred. "Future paths for integer programming

and links to artificial intelligence." Computers &

operations research 13.5 (1986): 533-549.‏

23. Glover, Fred. "Heuristics for integer programming

using surrogate constraints." Decision Sciences 8.1

 ‏.156-166 :(1977)

24. Glover, Fred, and Manuel Laguna. "General purpose

heuristics for integer programming—part II." Journal

of Heuristics 3.2 (1997): 161-179.‏

25. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983).

Optimization by simulated

annealing. science, 220(4598), 671-680.‏

26. Černý, V. (1985). Thermodynamical approach to the

traveling salesman problem: An efficient simulation

algorithm. Journal of optimization theory and

applications, 45(1), 41-51.‏

27. Taillard, Éric. "Robust taboo search for the quadratic

assignment problem." Parallel computing 17.4-5

 ‏.443-455 :(1991)

28. Battiti, Roberto, and Marco Protasi. "Reactive search,

a history-sensitive heuristic for MAX-SAT." Journal

of Experimental Algorithmics (JEA) 2 (1997): 2.‏

29. Battiti, R., & Tecchiolli, G. (1994). The reactive tabu

search. ORSA journal on computing, 6(2), 126-140.‏

30. Nowicki, Eugeniusz, and Czeslaw Smutnicki. "A fast

taboo search algorithm for the job shop

problem." Management science 42.6 (1996): 797-813.‏

31. Gendreau, M., Laporte, G., & Potvin, J. Y. (2001,

January). Metaheuristics for the capacitated VRP.

In The vehicle routing problem (pp. 129-154). Society

for Industrial and Applied Mathematics

32. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B.
(1993). Network flows: theory, algorithms, and
applications.‏

33. Bar-Yam, Y. (1997). Dynamics of complex
systems (Vol. 213). Reading, MA: Addison-
Wesley.‏

34. Stützle, T., & Hoos, H. (1999). The max-min ant
system and local search for combinatorial
optimization problems. In Meta-heuristics(pp.
313-329). Springer US.‏

