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ABSTRACT: This paper presents the multi-objective tabu search method for the multi-objective assignment problem. As a 

well-known adaptation of the tabu search, it uses heuristically to create non-dominated alternatives to multi-objective 

combinatorial optimization problems. MOTS works with a set of current solutions that appreciate the manipulation of 

weights, which is optimized towards the non-dominated border while trying to disperse on the border. It generate some 

problem to measure the effectiveness of the algorithm in three different objective sizes of the question and compare the 

results with the simulated annealing algorithm, the genetic algorithm and particle swarm optimization by three 

measurements. This algorithm has displayed great efficiency in solving the problem in relation to the rest of the roads. 
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1. INTRODUCTION 

The classical assignment problem (AP) is to search for one 

to one identity amongst n jobs and n workers, the main idea 

is the reduction of the total cost or maximizing the total 

efficiency of the assignments. The classical AP has widely 

been studied in literatures and several algorithms are 

accessible for solving it, for example, the Hungarian 

method [5], the flow type method [3], the Munkres method 

[9]. 

In real world most of the assignment problem possess 

multiple objective such as reduction in cost and 

simultaneously increasing difficult problems, number of 

objectives and switching from the problem of multi-

algorithm solution of the border into a more complex 

geometry problem as seen in most issues that multiple 

objective does not have a polynomial algorithm and also in 

the field of multi-objective combinatorial optimization 

problem. 

2. The Multi objective Optimization Problem 

The problem of multi-objective optimization can be 

explained as a problem of discovering a vector of decision 

variables that meet the constraints and optimizing a vector 

function whose objective functions is represented by 

elements. These functions are mathematical explanation for 

performance conditions which are always in conflict with 

each other. So, the term "optimize" means discovering such 

solution that would provide the values of all objective 

functions which would be accepted by the decision maker. 

Multi-objective optimization’s general problem can now be 

correctly defined as follows: 

Definition 1 (General MOP): Find the vector  ⃗   
 ,  

    
      

 -  which satisfies the m inequality 

constraints: 

  ( ⃗)                        ( ) 
the p equality constraints 

  ( ⃗)                       ( ) 
and optimizes the vector function 

 ⃗( ⃗)  ,  ( ⃗)   ( ⃗)     ( ⃗)-
  

In other words, it aims to determine from the set of all the 

numbers that satisfy (1) and (2) for particular set 

  
    

      
  which provides the values for optimal all-

purpose functions. The constraints given by (1) and (2) 

define the feasible region n and any 

A workable solution is define by the point  ⃗ in Ω. The 

vector function  ⃗( ⃗) is a function that maps the set Ω into 

the set Λ which represents all the possible values of the 

objective functions. The k components of the vector 

 ⃗( ⃗)represent the non-commensurable conditions that must 

be put into consideration. The constraints   ( ⃗) and   ( ⃗) 
represent the restraints enforced on the decision variables. 

The vector i* is reserved to denote the optimal solutions 

(there are commonly more than one). 

3. Multi objective Assignment problem 
The expression of general multi-objective combinatorial 

optimization problem is as follows: 

(    ) {
min ( )  (  ( )   ( )    ( ))

   
 

Where        represents the number of objective 

functions,     (            ) represents the vector for the 

decision variables, S represents the (finite) set of practical 

solutions in the solution space  . The set Z = F(S) is the 

feasible points (outcome set) in the objective space    

and     (            ), with         ( ), is a point of 

the objective space. 

Importantly in (MOCO), the term ―min‖ is presented in a 

quotation marks because, there is no single solution that 

exist that is minimal on all objectives. As a result, 

numerous concepts must be proven to explain what an 

optimal solution is. The most frequently used one is the 

dominance relation (also known as Pareto dominance) (Fig. 

1): 

Definition 2 A point     (            ) dominates a point 

   (            )  and we denotes       if and only 

for all i  *       +,         with at least one    
 *       + such that(       ). 
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Fig. 2. Algorithm: Iterative Improvement. 

 

  *          + 
The difficulty of MOCO problems was generated from the 

following two factors. 

• The resolution of a MOCO problem needs thorough 

cooperation with the decision makers (DM), which 

transforms into a specific high requirements for the 

effective tools utilized in generating effective solutions. 

• Several combinatorial problems are challenging, even in 

single-objective versions while their multiple objective 

versions are more difficult. 

Furthermore, several single-purpose combinatorial 

difficulties belong to the group of NP-hard problems. 

Creating effective solutions in a MOCO problem is 

apparently not easier than searching solutions that optimize 

specific objectives and in most cases is more difficult. For 

instance, 

The tools utilize for generating effective solutions in 

MOCO, like single-purpose optimization methods, can be 

grouped into one of the following: 

• exact procedures; 

• specialized heuristic procedures; 

• meta-theorist procedures. 

4. Local Search algorithms 
In this segment, we give an account of the metaheurists 

called trajectory methods. The trajectory methods term is 

used due to the searching process carried out by these 

methods which is characterized by a trajectory in the search 

space. Subsequently, a successive solution might or might 

not be in the locality of the present solution. The process of 

looking for trajectory methods can be considered as the 

(discrete) evolution of a discrete dynamic system (Bar-Yam 

1997]. The algorithm starts from a preliminary state (the 

initial solution) describing the trajectory in the state space. 

The system dynamics depend on the strategy used; Simple 

algorithms create a trajectory which is made of two parts: a 

transitory phase followed by an attractor (a fixed point, a 

cycle or a complex attractor). Algorithms with advanced 

strategies produce more complex 

Definition 3 A solution x    S is regarded as (Pareto) 

efficient for (MOCO) if and only it does not exist in any 

other feasible solution      , in such that   ( )      ( 
 ) 

for          with at least one     *       + such that 

  ( )      ( 
 ). The point  (  ) is then called a non-

dominated point. The set of efficient solutions, also known 

as the Pareto optimal set, is always denoted by E and the 

image of E in Z is called the non-dominated frontier or the 

Pareto optimal front which is denoted by  . 

The single objective assignment problem (AP) is an integer 

programming problem which can be solved using a linear 

program because of the constraint matrix in total 

unimodularity. The Hungarian method or the successive 

shortest paths method (Papadimitriou and Steiglitz, 1982; 

Ahuja et al., 1993) are the well-known efficient algorithm 

for solving it. In this paper, we are considering the 

assignment problem with two objectives (BAP). This can 

be formulated as described below: 

This solution can be detected via numerous methods, where 

the solution is given by a permutation vector  , of n 

elements: 

 

Fig. 1 Dominations in the Pareto sense in a bi-objective Space 

 

trajectories that cannot be divided into these two phases. 

The features of the trajectory give information on the 

behavior of the algorithm and how effective it is with 

regards to the case addressed. Therefore, it should be 

underscored that the dynamics is the result of the 

summation of the algorithm, the problems representation 

and the instance of the problem. In fact, the problem 

representation and the neighborhood structure define the 

research landscape. The algorithm provides the description 

of the strategy employed for exploring the landscape and 

finally the actual features of the search space are defined by 

the instance of the problem to be solved. Firstly, we will 

describe the basic local search algorithms prior to moving 

on to more complex strategies and lastly we deal with 

general exploration strategy algorithms which can integrate 

other trajectory methods as components. 

4.1 Basic Local Search: Iterative Improvement 

Basic local search is generally referred to as iterative 

enhancement, since every movement is only carried out if 

the resulting solution is better than the current solution. The 

algorithm stops immediately, it finds a local minimum. The 

high level algorithm is defined in Figure 2. The Enhance (N 

(s)) function can either be at the extreme or at a first 

improvement, or at any intermediate option. The first 

analyzes the N (s) of the neighborhood and select the first 

A better solution than s is that the latter exhaustively 

explores the neighborhood and returns one of the solutions 

with the lowest objective function value. Both methods 

terminate at local minimums. Therefore, their performance 

strongly rely on the definition of          . The 

performance of Iterative improvement procedures on COP 

is mostly unsatisfactory. Therefore, numerous techniques 

have been developed to stop algorithms from being trapped 

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐋𝐒  
𝑠 ←  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() 
     𝒓𝒆𝒑𝒆𝒂𝒕 

𝒖𝒏𝒕𝒊𝒍 𝑛𝑜 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 

 𝑠 ←  𝐼𝑚𝑝𝑟𝑜𝑣𝑒(𝑁(𝑠)) 
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in local minima, which is performed by the addition of 

mechanisms that permit them to escape local minima. This 

also infers that the terminating conditions of the 

metaheurstic algorithms are more complex than simply 

reaching a local minimum. Certainly, the possible 

termination conditions include: the maximum CPU time, a 

maximum number of iterations, a solution s with   ( ) less 

than a predefined threshold value or the maximum number 

of iterations without improvements is reached. 

4.2 Simulated Annealing  

Simulated annealing (SA) is usually regarded as the oldest 

among the metaheurstic and definitely one of the premier 

algorithms that possess an explicit strategy for escaping the 

local minima. The statistical mechanics are the origins of 

the algorithm (Metropolis algorithm) and it was presented 

for COP in Kirkpatrick et al. [25] and Cerny [26] as a 

search algorithm. The ultimate idea is to permit movements 

leading to quality solutions worse than the current solution 

(uphill movements) in order to escape the local minima. 

The probability of such a movement is reduced during the 

search. The high level algorithm is described in Figure 3. 
 

 

 

 

 

 

 

Fig. 3. Algorithm: Simulated Annealing (SA). 

 

The algorithm starts by creating an initial solution 

(constructed in a random or heuristic manner) and the 

initialization of the temperature parameter T. Then, at each 

iteration, a solution        ( ) is randomly sampled and is 

accepted as F (s), f (s), and T. s0 replaces s if   (   )   
  ( ) or, in the case   (  ) ¸ f Which is a function of T and 

  (  )      ( ). The probability is commonly computed 

following the Boltzmann distribution  (  
  (  )   ( ) 

 
 )
. 

There is a decrease in temperature T during the search 

process at the beginning of the search, the probability of 

accepting uphill movements is higher and it steadily 
decreases, congregating towards a simple iterative 

improvement algorithm. This process is similar to the metal 

and glass process of annealing, which gives a low 

configuration of energy when cooled with a suitable 

cooling program. With regards to the search process, it 

means that the algorithm is the result of the combination of 

two strategies: random walk and iterative improvement. In 

the first phase of this research, the bias of the 

improvements is minimal and permits the exploration of the 

research space; this erratic component reduces gradually, 

which results to search for converge to a minimum (local). 

The probability of accepting uphill movements is regulated 

by two factors: the difference among objective functions 

and temperature. On the one hand, at a fixed temperature, 

the higher the difference   (   )      ( )  the lower the 

probability of accepting a displacement from S to S'. On the 

other hand, the higher the T, the higher the probability of 

uphill climb. Choosing an appropriate cooling schedule is 

crucial to the performance of the algorithm. The cooling 

program defines the value of T at each iteration k, 

  (     )      (    ), where  (    )      is a 

function of temperature and number of iterations and 

   (   ) To an exponential decay of the temperature ... 

Theoretical results on non-homogeneous Markov chains 

[Aarts et al. 1997] indicated that, under specific conditions 

on the cooling schedule, the algorithm converges in 

probability to a global one. 

The intensity of water can be reduced with water cooling. 

For example, at the beginning of the search, T could be 

constant or reduce linearly for the sampling of the search 

space; Then T could go along the geometry rule, to 

converge to the minimum at the end of the search. 

Most successful variants are non-monotonic cooling 

schedules as described by Osman[19] and Lundy and Mees 

1986 [20],. Non-monotonic cooling schedules are 

categorized by alternating the cooling and reheating phases, 

which offer an oscillating balance between diversification 

and intensification. 

The cooling system and the initial temperature should adapt 

to the particular problem because the structure of the 

research landscape determines the cost of exhausting local 

minima. The easiest way to empirically determine the 

starting temperature    is to first sample the search space 

with a random walk to approximate the average and the 

variance of the values of the objective function and also 

implementation of more elaborate schemes can be 

performed [21]. 

4.3 Tabu search 

Tabu Search (TS) is one of the most common cited 

metaheuristics used for CO problems. Glover was first to 

introduce the basic ideas of TS based on former ideas 

[22][23]. 

The method and its concepts can be found in Glover and 

Laguna [24]. TS clearly uses the search history, for 

escaping local minima and for the implementation of an 

exploration strategy. 

A simple version of TS would be first described to present 

the basic concepts. Further, we will explain a more 

applicable algorithm and lastly we will discuss some 

improvements. 

 

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐒𝐀  
𝑠 ←  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() 
𝑇 ←  𝑇  
𝒘𝒉𝒊𝒍𝒆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡 𝒅𝒐 
𝑠  ←  𝑃𝑖𝑐𝑘𝐴𝑡𝑅𝑎𝑛𝑑𝑜𝑚(𝑁(𝑠)) 
𝒊𝒇 ( 𝑓 (𝑠 )    𝑓 (𝑠)) 𝒕𝒉𝒆𝒏 
𝑠 ←  𝑠              % 𝑠  𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠 𝑠 
𝒆𝒍𝒔𝒆 
𝐴𝑐𝑐𝑒𝑝𝑡 𝑠  𝑎𝑠 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝(𝑇 𝑠  𝑠) 
𝒆𝒏𝒅𝒊𝒇 
𝑈𝑝𝑑𝑎𝑡𝑒(𝑇) 
𝒆𝒏𝒅𝒘𝒉𝒊𝒍𝒆 
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Fig. 4. Algorithm: Simple Tabu Search (TS). 

The simple TS algorithm put on a better local search for 

improvement as the elementary ingredient and utilizes a 

short-term memory for escaping local minima and for 

cycle’s avoidance. The short-term memory is implemented 

in the form of list of tables which permits the tracking of 

the last solutions visited and stop the displacements 

towards them. The area of the current solution is so limited 

to solutions that do not belong to the list of tabuses. This 

set will be refer to as defined in the following,  

At each iteration, the best solution of the authorized game 

is chosen as the new current solution. Likewise, this 

solution is added to the list of tabu and one of the solutions 

already contained in the tabu list is deleted (usually in a 

FIFO command). Due to this dynamic restriction of 

permitted solutions in a neighborhood, TS can be 

considered as a dynamic neighborhood research technique 

[34]. The algorithm stops when a termination condition is 

met. It can also terminate if the allowed set is empty, if all 

solutions of N (s) are forbidden by the list of tabu. 

Application of a tabu list inhibits the going back to recently 

visited solutions, Therefore, it prevents endless cycling and 

forces research to accept uphill movements. The length l of 

the tabu list (the duration of the tabu) controls the memory 

of the search process. With small tabu positions, the search 

will focus on small areas of the search space. On the other 

hand, a huge regime of taboos forces the research process 

to discover larger regions because it prevents revisiting a 

greater number of solutions. The duration of the tabu can 

differs during the search, leading to more robust 

algorithms. [27] described the model for this, in which the 

tabu regime is occasionally reset indiscriminately from the 

interval [lmin, lmax]. A more advanced use of a dynamic 

taboo regime is described in [28,29],  

The rate of pension increased if evidence for repetition of 

solutions exist (Hence greater diversification is required), 

Eight strategies to elude stopping the search when the 

allowed play is empty include choosing the less solution 

recently visited, even if it is a tabu. Nine cycles of higher 

period are possible, since the list of tabu has a finite length 

l which is lesser than the Cardinality of the search space. 

While it drops if no improvements is observed (therefore 

the strength should be intensify). More advanced ways for 

creating a dynamic taboo regime are defined in Glover 

[30]. Nevertheless, the implementation of short-term 

memory as a list having total solutions is not practical since 

managing a list of solutions is very ineffective. So, instead 

of the solutions themselves, the solution characteristics are 

stored. Attributes are typically solution components, 

movements, or differences among two solutions. As more 

than a single feature can be considered, a tabu list is entered 

for each characteristic. The set of features and the 

corresponding tabu lists describe the tabu conditions that 

are used for filtering the neighborhood of a solution and for 

creating the permitted set. Storing attributes instead of 

complete solutions has greater efficient, but it results to loss 

of information because forbidding an attribute implies 

affecting the state of the table to probably more than one 

solution. Consequently, it is promising that non-visited 

solutions of good quality are left out from the permitted 

play. To circumvent this problem, 

Suction criteria are defined to allow a solution to be 

included in the permitted game, even though it is prohibited 

by the tabu conditions. The Suction Criteria set the suction 

settings for generating the allowed set. The most widely 

utilized aspiration criterion selects better when compare to 

the best solutions. The complete algorithm, as defined 

above, is reported in Figure 4. Taboo lists are only one way 

to take advantage of the search history. They are usually 

recognized using the short-term memory. The information 

collected during the search procedure can also be very 

valuable, particularly for a strategic orientation of the 

algorithm. This particular long-term memory is commonly 

added to TS by referring to four principles i.e. recurrence, 

frequency, quality and influence. The memory records 

based on recurrence for each solution (or feature) which is 

the most recent iteration that was involved. The memory 

based on the orthogonal frequency keeps record of how 

frequent each solution (attribute) was visited. This 

information identifies the regions (or Subsets) of the 

solution space where the search was restricted or where 

there is a remained of a large number of iterations. This 

kind of information regarding the past is generally 

exploited for research diversification. The third principle 

(that is, quality) refers to the accumulation and retrieval of 

information from the search history for identifying good 

solution components. This information can be incorporated 

efficiently into the construction of the solution. Other 

metaheuristics (for example, Ant Colony Optimization) 

explicitly utilize this principle to distinguish the right 

combinations of components in the solution. Lastly, 

influence is a property concerning the choices made during 

the search and can be used for indicating which choices are 

the most vital. Overall, the TS field is a rich source of 

ideas. Several of these ideas and strategies have been and 

are being adopted by other metaheuristics. TS has been 

applied to most CO problems; Examples for successful 

applications are Robust Tabu Search in QAP [27], Tabu 

reactivity to the MAXSAT problem [29], and assignment 

problems]. TS approaches dominate the challenging area of 

Job Shop Scheduling (JSS) and the vehicle routing area 

(VR). 

Multi objective Tabu search algorithms 
The multi-objective tabu search procedure, MOTS, 

functions using a set of current solutions that are 

concurrently optimized against the non-dominated border. 

The points of the existing solutions are sought to cover the 

entire boundary and, for each solution in numerous times. 

An optimization direction is produce so that it tends to 

migrate away from the other points in the direction of the 

boundary not dominated. The solutions in turn take the 

application of a motion according to a tabu search heuristic 

and each solution maintains its own tabu list. In the 

following, we will annotate the Pascal contour of the 

MOTS database in FIG. 5. 

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐓𝐒  
𝑠 ←  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() 
𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ←  𝜙 
𝑤 𝑖𝑙𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡 𝑑𝑜 
𝑠 ←  𝐶 𝑜𝑜𝑠𝑒𝐵𝑒𝑠𝑡𝑂𝑓(𝑁(𝑠)\ 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡) 
𝑈𝑝𝑑𝑎𝑡𝑒(𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡) 
𝑒𝑛𝑑𝑤 𝑖𝑙𝑒 
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In row 1, each current solution is set to a random startup 

solution and the list of tabs (TL) is flushed. In line 2, the 

current set of non-dominated points (ND) is emptied, an 

iteration counter is reset and the range equalization factors 

(p) are defined on a unit vector. We then commence the 

loop which continually vacate each current solution passing 

a neighboring solution until a certain STOP criterion is 

respected. In lines 5-11, the weight vector (l) for the point 

is determined. This vector belongs to L and thus guarantees 

the optimization towards the non-dominated limit. We want 

to repair the weights so that the point moves away from the 

other points, ideally, that the points are distributed 

equidistantly on the border. Thus, each element of the 

weight vector is defined as a function of the proximity of 

other points for this purpose. Though, we only compare one 

point with the points of the current solution to which it is 

not dominated. The closer a point is, the more it should 

influence the weight vector. Proximity is measured by a 

distance function (d) as a function of certain measurements 

in the objective function space using the weights of the 

range. The influence is produce by a decreasing and 

positive proximity function (g) over the distance. In 

practice, the well-functioning proximity function ( )  
   , as well as the Manhattan distance (used on the scale 

objectives by the beach equalization factors, i.e. 

 (       )  ∑  |  
    

 | Emphasis on result in rows 12 

to 15, the standard tabu search procedure is used to replace 

a current solution with the possible neighborhood solution 

(generated by the neighborhood function N) that can be 

reached from Tabu. This is a type of attribute (A) on 

solutions of solutions and solutions to avoid movements to 

the solution. The best neighbor is determined by the scalar 

product between the weight vector and the vector objective 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In line 16, the new point is inserted into the ND-set if it is 

not dominated by it, and the points previously defined in 

the ND-set that are dominated if any is deleted and we can 

also save the solution if interested. The equation of the 

range is defined as a function of the ranges of points in the 

set ND that can be updated (of course they can only be 

calculated if we have at least two points defining a positive 

range in each goal). The use of point ranges in the ND set is  

a common suggestion in cases where no other knowledge 

of ranges is available. In this paper, we propose a random 

solution. It's a non-dominated border, and a non-dominated 

point. The next section will show how the dynamic 

dynamics of the drives in the X. 

Finally, in line 18, the iteration counter is increase by 1, 

and we are ready to continue with the next of the current 

solutions.

 

  

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐛𝐚𝐬𝐢𝐜 𝐌𝐎𝐓𝐒  
  for each solution x𝑖  in X do set x𝑖  to a random feasible solution and set TLi   *+ 
  set ND   ϕ and set count     and set π𝑘    n for all objectives k 
3 repeat 
4 for each solution x𝑖  in X do 
5 set λ     
6 for each solution j in X where f(xj)is n  dominated by f(xi) and f(xi)  ≠  f(xj) do 
7 set w   g(d(f(xi) f(xj) π)) 
8 for all objective k where fk(xi)   fk(xj) do set λ𝑘   λ𝑘     π𝑘w 
9 end 
   if λ     then set λ to a randomly chosen vector from Λ 
   normalize(λ) 
   find the solution yi which minimizes λ f(xi) where yi  N(xi) and A(xi yi)  ∉  TLi 
 3 if TLi is full then remove oldest element from TLi 
 4 add A(yi xi) to TLi as the newest element 
 5 set xi   yi 
 6 if f(yi) is n  dominated by all point in ND then implement the point f(yi) into ND 
and update π 
 7 if DRIFT  criterion is reached then set one randomly selected solution from 
X equal to another randomly selected solution from X 
 8 set count   count     
 9 end 
   until STOP  criterion is met 

 

Figure 5: The basic MOTS procedure 
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Figure 6: Structure of an iteration for a multi objective Tabu Search 

 

5. Neighborhood search 

In the local search, three procedure were used. The novel 

solution is a neighbor of the existing solution. The first is a 

swap procedure which is sufficient for selecting randomly 

from the existing solution of (in the solution space) two 

workers and for swapping between the jobs for which they 

were assigned (see Figure 7-a). 

 

 

 

 

 

 

 

 

 

 

 

 

In the second process, we randomly select two points 

provided that the second point is greater than the first and 

with inversion vector between the two points (see Figure 7-

b). The third process we randomly select two points 

provided their second point is greater than the first and then 

the following equation is applied (see Figure 7-c): 

   , (      )      (     )   (      )-              
       (4) 

6. Experimental Results  

The algorithm was tested with new data on problems that 

were randomly chosen with a range of coefficients of the 

objective functions in [0, 20]. Each problem is re-run ten 

times using a Core-i5 2.4 GHz PC with 4GB RAM in 

Windows operating system and programming using matlab 

2013 a. It was then compared to (TS,SA,GA.PSO) and we 

evaluated their performances according to three measures 

of quality of E (approximate set of efficient solutions): 

1. An average distance between  ̂ and E : 

  (  ̂   )  
∑  (    ̂  )

| |
           (5) 

2. A worst case distance between  ̂ and E : 

  (  ̂   )  max
   

 ( ̂  )              (6) 

3. A measure of the uniformity of quality of  ̂ : 

 

      
  (  ̂   )

  (  ̂   )
                       (7) 

 

Solution : 3 1 2 4  7 6 5 

New Solution : 3 7 2 4  1 6 5 

Figure (7-a):local search procedure (swap) 

𝐽  𝐽  

 

Solution : 3 1 2 4  7 6 5 

New Solution : 3 7 4 2  1 6 5 
Figure (7-b):local search procedure 

(inersion) 

   

𝐽  𝐽  

Solution : 3 1 2 4  7 6 5 
New Solution : 7 6 5 2 4 3 1 

Figure (7-c):local search procedure (2-opt) 

𝐽  𝐽  
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Table(1) The results of the comparison between algorithms  for size problem between(15-60)  

 

 

Table(2) The results of the comparison between algorithms  for size problem between(75-120)  

problem TS PSO SA GA 

number size D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) 

11 75 15.33 192.00 12.52 101.90 124.33 296.00 2.38 75.88 196.67 384.00 1.95 14.18 175.33 357.00 2.04 64.04 

12 80 13.67 187.00 13.68 116.61 122.67 306.00 2.49 75.43 201.67 419.00 2.08 15.09 181.33 355.00 1.96 68.75 

13 85 13.33 185.00 13.88 129.12 161.33 338.00 2.10 78.64 226.67 420.00 1.85 14.98 198.33 383.00 1.93 68.78 

14 90 17.00 202.00 11.88 139.39 146.33 342.00 2.34 79.36 230.67 421.00 1.83 16.65 215.33 394.00 1.83 67.45 

15 95 16.00 207.00 12.94 153.36 204.67 394.00 1.93 80.81 261.33 471.00 1.80 16.47 239.00 466.00 1.95 69.75 

16 100 17.00 221.00 13.00 171.07 196.00 412.00 2.10 85.07 280.67 490.00 1.75 16.91 257.67 506.00 1.96 78.13 

17 105 21.00 215.00 10.24 178.29 267.00 471.00 1.76 86.30 304.00 516.00 1.70 16.43 283.67 519.00 1.83 77.16 

18 110 14.67 231.00 15.75 192.68 194.33 414.00 2.13 82.27 313.00 535.00 1.71 15.24 294.33 519.00 1.76 76.72 

19 115 
17.33 257.00 14.83 207.68 320.67 564.00 1.76 83.59 326.33 563.00 1.73 15.40 306.33 548.00 1.79 78.34 

20 120 19.00 249.00 13.11 211.93 245.00 481.00 1.96 84.05 355.33 593.00 1.67 15.43 316.00 542.00 1.72 81.71 

 

  

problem TS PSO SA GA 

number size D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) 

1 15 3.67 55.00 15.00 9.44 1.67 57.00 34.20 50.00 6.00 64.00 10.67 11.33 2.00 59.00 29.50 30.97 

2 20 7.67 61.00 7.96 18.77 4.67 67.00 14.36 59.28 23.00 82.00 3.57 14.71 10.00 71.00 7.10 39.92 

3 25 2.33 86.00 36.86 20.90 10.00 92.00 9.20 62.17 21.33 102.00 4.78 13.95 14.67 93.00 6.34 42.93 

4 30 6.67 78.00 11.70 27.85 15.00 98.00 6.53 63.40 44.00 132.00 3.00 14.29 34.00 117.00 3.44 47.42 

5 35 7.00 101.00 14.43 32.12 26.33 113.00 4.29 63.87 63.00 157.00 2.49 13.10 49.00 149.00 3.04 48.53 

6 40 7.33 121.00 16.50 36.97 40.67 162.00 3.98 67.47 65.67 222.00 3.38 14.52 58.00 180.00 3.10 51.39 

7 45 8.33 121.00 14.52 45.60 45.67 184.00 4.03 68.27 83.67 206.00 2.46 15.02 73.67 208.00 2.82 56.89 

8 50 8.33 119.00 14.28 52.60 74.33 221.00 2.97 71.59 109.33 223.00 2.04 15.58 79.33 213.00 2.68 56.43 

9 55 11.67 139.00 11.91 58.95 71.33 204.00 2.86 74.57 120.67 266.00 2.20 15.07 97.67 241.00 2.47 59.98 

10 60 12.33 154.00 12.49 69.06 74.33 211.00 2.84 73.74 140.00 286.00 2.04 13.28 116.33 258.00 2.22 60.37 
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Table(3) The results of the comparison between algorithms  for size problem between(150-250)  

 

problem TS PSO SA GA 

number size D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) D1 D2 Ratio Time(s) 

21 150 42.00 310.00 7.38 44.16 326.33 621.00 1.90 63.10 460.67 765.00 1.66 9.87 427.33 733.00 1.72 183.47 

22 160 55.00 358.00 6.51 22.34 335.67 617.00 1.84 52.43 497.00 807.00 1.62 22.32 469.67 778.00 1.66 95.88 

23 170 50.67 360.00 7.11 21.47 521.67 826.00 1.58 63.87 540.00 906.00 1.68 10.41 502.33 817.00 1.63 95.93 

24 180 42.33 338.00 7.98 40.01 585.33 901.00 1.54 60.04 587.33 948.00 1.61 10.50 563.00 859.00 1.53 88.30 

25 190 57.33 377.00 6.58 38.59 617.67 948.00 1.53 57.44 622.00 963.00 1.55 11.31 569.67 891.00 1.56 65.66 

26 200 46.33 397.00 8.57 30.09 547.67 906.00 1.65 63.45 648.33 980.00 1.51 11.86 623.00 980.00 1.57 77.36 

27 210 56.00 423.00 7.55 50.59 683.33 1056.00 1.55 68.38 707.67 1070.00 1.51 12.31 663.33 1040.00 1.57 139.46 

28 220 53.00 410.00 7.74 63.20 670.00 1067.00 1.59 79.69 748.67 1121.00 1.50 21.65 705.33 1071.00 1.52 114.77 

29 230 51.33 449.00 8.75 68.03 768.67 1149.00 1.49 65.47 768.00 1159.00 1.51 11.09 745.33 1164.00 1.56 186.98 

30 240 48.67 440.00 9.04 91.37 824.00 1234.00 1.50 60.75 822.00 1244.00 1.51 23.24 788.33 1208.00 1.53 77.88 

31 250 65.33 471.00 7.21 66.47 864.67 1258.00 1.45 121.73 874.00 1336.00 1.53 13.88 813.33 1279.00 1.57 163.35 
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Figure (8-a): the comparison between algorithms (problem1-

problem10) 

 

 

 

 

 

 

 

Figure (8-b): the comparison between algorithms (problem11-

problem20) 

 

  

 

 

 

 

 

Figure (8-c): the comparison between algorithms (problem21-

problem31) 

DISCUSSION RESULT  

In Tables 1, 2 and 3, we make available a summary of the 

results acquired by the TS Algorithm and PSO, SA and GA 

Algorithms. Comparing the TS with three Algorithms, it 

was observed that in terms of the quality of the solutions 

the TS goes beyond the determination of PSO more than 1 

and 2  effective solutions at the same time. For other cases 

the TS provided all the advantages Solutions. 

 

7. CONCLUSION 

 In this article, a Tabu search algorithm using three local 

moves (2-opt, inversion and swap) has been proposed to 

solve a multi-objective assignment problem with three or 

more objectives. The first results are promising. When 

compared to Pso, SA and GA, the Tabu search algorithm 

permit much better solutions for same time. In the future 

work, many computational experiments could be studied 

for a multi-objective assignment problem and other classes 

of multi-objective combinatorial optimization problems. 

Finally, we propose to parallelize the method: instead of 

choosing a new current solution    from the set of efficient 

local solutions in the neighborhood of   , we reiterate the 

method with all local solutions efficient to get a better 

Quality solutions. 
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